Neuronale Netze Introspection

Prof. Dr.-Ing. Sebastian Stober

Artificial Intelligence Lab Institut für Intelligente Kooperierende Systeme Fakultät für Informatik stober@ovgu.de

FACULTY OF COMPUTER SCIENCE

Recurrent Neural Nets

LeCun, Bengio & Hinton. "Deep Learning." nature 521.7553 (2015)

recursive networks

y

L

x

y

encoder

The repeating module in an LSTM contains four interacting layers.

Copy

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Generate Image Captions

Describes with minor errors

Describes without errors

A person riding a motorcycle on a dirt road.

Two dogs play in the grass.

A skateboarder does a trick on a ramp.

A little girl in a pink hat is blowing bubbles.

A dog is jumping to catch a frisbee.

A refrigerator filled with lots of food and drinks.

A yellow school bus parked in a parking lot.

A group of young people playing a game of frisbee.

A herd of elephants walking

across a dry grass field.

Two hockey players are fighting over the puck.

A close up of a cat laying on a couch.

A red motorcycle parked on the side of the road.

Answer Visual Questions

https://avisingh599.github.io/deeplearning/visual-qa/

RNNs

- work well for sequential data
 - time series (with low sampling rate)
 - texts (translation, discourse, sentiment, ...)

support variable-length input

 including long-term dependencies

are hard to parallelize

Introspection

Types of Introspection

feature visualization

layer-wise relevance propagation (LRP) deep Taylor decomposition

feature visualization by optimization (find the input that optimizes a particular part of the network)

https://distill.pub/2017/feature-visualization/

https://distill.pub/2017/feature-visualization/

What's the main problem with the (vanilla) optimization approach? How do we solve this?

unregularized optimization is unnatural

regularization methods

VS

frequency penalization

transformation robustness learned prior

Layer-wise Relevance Propagation (LRP) forward pass

[Montavon et al. (2017). Explaining nonlinear classification decisions with deep Taylor decomposition.]

Deep Taylor Decomposition and LRP

What's the difference?

deep Taylor decomposition

$$R_d^{(1)} = (x - x_0)_{(d)} \cdot \frac{\partial f}{\partial x_{(d)}}(x_0)$$

- root point x_0 must be determined
- computationally efficient (backprop)

layer-wise relevance propagation

$$R_{i\leftarrow j}^{(l,l+1)} = \frac{z_{ij}}{z_j} \cdot R_j^{(l+1)}$$

- no root point needed
- computationally expensive

Forward pass

1	-1	5		1	
2	-5	-7	\rightarrow	2	
-3	2	4		0	

GradCAM: Gradient-weighted Class Activation Mapping

(a) Original Image

(c) Grad-CAM 'Cat'

gradients via backprop

importance of feature map A^k for class c

 $L_{\text{Grad-CAM}}^{c} = ReLU\left(\sum_{k} \alpha_{k}^{c} A^{k}\right)$

linear combination

combine all feature maps A^k in one layer as weighted sum

GradCAM: Gradient-weighted Class Activation Mapping

(a) Original Image

(g) Original Image

(c) Grad-CAM 'Cat'

(i) Grad-CAM 'Dog'

[Selvaraju et al. (2016). Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization.]

GradCAM: Gradient-weighted Class Activation Mapping

(g) Original Image

(h) Guided Backprop 'Dog'

(i) Grad-CAM 'Dog'

(j) Guided Grad-CAM 'Dog'

[Selvaraju et al. (2016). Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization.]

Sanity Checks for Introspection

[Adebayo et al. (2018). Sanity Checks for Saliency Maps.]

Problems

- these models
 - sometimes require particular architectures (e.g. only 2D-convolution with max-pooling)
 - mostly use ReLUs and a positive input space (which pixels positively influence an output class)
 - are mostly evaluated only for images (visually interpretable)
- not well applicable for
 - other activation functions (allowing negative activation)
 - real-valued input space (negative values)
 - visually hardly interpretable data (e.g. waveforms)

Introspection for Speech Processing Models

Speech Recognizer on a Budget

• data:

- use only free / public datasets

- model with limited compute resources:
 - single (consumer-level) GPU for training
 - not more than a few days for training
 - real-time capability during deployment
- loss function

Training Data (English)

LibriSpeech Corpus

http://www.openslr.org/12/

- -~1000h annotated audio
- from public domain audio books
- semi-automatically cut into phrases
- good recording quality

"LibriSpeech: an ASR corpus based on public domain audio books", V. Panayotov, G. Chen, D. Povey and S. Khudanpur, ICASSP 2015

Input: Spectrogram

"Concord returned to its place amidst the tents."

audio source: Alexandre Dumas "Ten Years Later", chapter 86 (LibriSpeech)

Wav2Letter (Facebook AI, 2016)

- 11 CNN layers
- ~ 25 Mio parameters
- 50 letters / s
- 1-2 days of training (Geforce 1080 Ti)

R. Collobert, C. Puhrsch & G. Synnaeve. 2016. **Wav2letter: an end-to-end convnet-based speech recognition system.** http://arxiv.org/abs/1609.03193

Learned Patterns (layer 1)

Typical Introspection Approaches

visualization in the input space

saliency maps back-projecting the predicted class

(a) Original Image

(b) Guided Backprop 'Cat' (c) Grad-CAM 'Cat'

[Selvaraju et al., 2016]

activation maximization (AM) Optimize input to maximally activate parts of network

Class Probability softmax[k]

layer [x,y,z]

Neuron

Channel layer_[:,:,z] Laver/DeepDream layer_[:,:,:]²

Class Logits pre softmax[k]

[https://distill.pub/2017/feature-visualization/]

32

Does this also work for speech recognition?

- saliency maps on the input and activation maximization are not easily interpretable for speech
- audio is time series (of spectrogram frames)

Event-Related Potentials (ERPs)

Event-Related Potentials (ERPs)

"Scalp-recorded neural activity that is generated in a given neuroanatomical module when a specific computational operation is performed."

Luck (2005). An Introduction to the Event-Related Potential Technique.

Electroencephalography (EEG)

64-electrodes cap (Biosemi)

EEG Visualization

- neuron activations are deterministic
- variance lies in the stimuli

(differences in context, talking speed, pronounciation)

problem: filters are learned without particular order

250 filters of layer 1

re-arrange filters by similarity using a self-organizing map

blue areas: beginning or ending of sounds, percussive sounds red areas: rising and falling pitches in different frequencies yellow area: noisy sounds

blue areas: beginning or ending of sounds, percussive sounds red areas: rising and falling pitches in different frequencies yellow area: noisy sounds

- highly similar neuron activations in English and German, but language-specific predictions

Topographic Filter Maps

neighborhoods of similar filters

K. Kavukcuoglu, R. Fergus & Y. LeCun. "Learning invariant features through topographic filter maps." *Computer Vision and Pattern Recognition, 2009. CVPR 2009.*

Deeper Analysis: Neuron Activation Profiles (NAPs)

Introspection for Audio Data

- We have
 - ... little intuition about input signal

... more intuition about the output 'SPEECH' → /S P IY CH/

Introspection for Audio Data

- Instead of saliency maps or activation maximization:
 - obtain layer-wise class-specific network responses
 - compare their similarities to human intuition

Deriving Phoneme Annotations

Needleman & Wunsch: "A general method applicable to the search for similarities in the amino acid sequence of two proteins." *Journal of molecular biology*, 48(3):443–453, 1970.

attention-based encoder-decoder encoder: 2 bi-LSTM layers decoder: global attention + 2 LSTM layers trained on CMU Pronunciation Dictionary

Krug, Knaebel & Stober: "Neuron Activation Profiles for Interpreting Convolutional Speech Recognition Models" In: IRASL Workshop @ NeurIPS 2018.

Characteristic Network Responses

center at highest importance: argmax_t(|gradient| \odot activation)

Gradient-adjusted Neuron Activation Profiles (GradNAPs)

- use sensitivity-based alignment
- use sensitivity values to mask out activations of low relevance for prediction

Clustering of NAPs in 9th Layer

- clusters of similar phonemes emerge
- no distinct clustering of NAPs for letters

Clustering of NAPs in 10th Layer

letters

phonemes ~2s distance - 1 XKSZYUOEAIHBWMLRDTGNCPFVIQ

- phoneme clusters become more distinct
 - cluster of vowel letters emerges

Clustering of NAPs

Krug, Knaebel & Stober: "Neuron Activation Profiles for Interpreting Convolutional Speech Recognition Models" In: IRASL Workshop @ NeurIPS 2018. 53

Recap: Introspection

feature visualization (optimize input)

AH AE AA OW AO

relevance / saliency analysis (for given input)

(c) Grad-CAM 'Cat'

Neuron layer [x,y,z]

Channel layer_[:,:,z] Layer/DeepDream layer_[:,:,:]²

Class Logits pre_softmax[k]

Class Probability softmax[k]

(a) Original Image

feature topography (improve interpretability)

RDH0x04FH>\$654AAAHTF\$768ax>780r+>8

=> sanity checks!

Hands-on: Distill / Lucid Tutorials

Start at

https://distill.pub/2017/feature-visualization/

 All images were generated using Lucid <u>https://github.com/tensorflow/lucid</u> (Scroll down for a list of notebooks!)