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Recurrent Neural Nets
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sequence-to-sequence

sequence to sequence (same length)

output at each time step
+ optional output-to-hidden
° connections
‘ - recurrent connections
tbetween hidden units
4 .
27T\
t — gl v
0 Unfold NS
U

can compute any function computable by a Turing machine
(universal function approximator)

sequence to sequence (same length)

output at each time step
0 only recurrent connections

from previous output
) -
—> [
> Unfold oA w
w
U trainable with “teacher forcing”

training can be parallelized

lacks important information from past
unless o is very high-dimensional & rich

sequence to sequence (same length)

output at each time step

recurrent connections
between hidden units

recurrent connections
from previous output

trainable with
“teacher forcing”

Unfold N _.

can model arbitrary distribution over
sequences of y given sequences of x

recursive networks

complex structure to fixed-size vector

recursive neural network
generalization of RNNs

computational graph (given from external

clojclch

generalization

RNNs

bi-directional sequence to sequence
(same length)

output at each time step

(extendable to 2D inputs)

recurrent connections
between hidden units

g(t) relevant summary
of future (backward)

h(t) relevant summary
of past (forward),

can model dependencies on both the past and the future

bi-directional

tool such as parser) structured as deep tree

fixed-size (“context”) vector to sequence

strange indexing (stressing prediction of next output)

RN

(needs to determine N
end of sequence) A
recurrent connections ’

from [previous] output O—

(usually with output-to-hidden CD

connections) O

——  ((@INAble with O

“teacher forcing”

recurrent connections /" N o

between hidden units [ __4 » CD

-

input x serves as constant context N
or/ and to initialize hidden state

decoder (writer): generate output sequence from hidden state
( = decoder part of encoder-decoder architecture)

sequence to sequence (variable length) S
encoder-decoder architecture O
> decoder (writer): Q_
generate output sequence
from hidden state CD
recurrent connections T
from [previous] output :
encoder (reader): o N s Q_
read input sequence, O\ W @ 0 >
> generate hidden state -8 v CD
o /
recurrent connections c [EE -
between hidden units o @ e e @
sequence to fixed-size vector
output after full input sequence has been read CD
recurrent connections Q_
between hidden units
/7N /7N CD
— el s =

U U U {
SRORD
1 ogl) V
S
encoder (reader): read input sequence, generate hidden state
( = encoder part of encoder-decoder architecture)



The repeating module in an LSTM contains four interacting layers.

O—>>->—<

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 5



https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Generate Image Captions

WL 1 A - A Nt *
A dog is jumping to catch a
frisbee.

A group of young people Two hockey players are fighting A little girl in a pink hat is

playing a game of frisbee. over the puck. blowing bubbles. A refrigerator filled with lots of

food and drinks.

A herd of elephants walking A close up of a cat laying A red motorcycle parked on the A yellow school bus parked in
across a dry grass field. on a couch. side of the road. a parking lot.



Answer Visual Questions

What vegetable is on the | What color are the shoes |How many school busses What sport is this?

? ! ? ?

plate? on the person's feet ? are there? ], Tietks Tenmelssil
Neural Net: b: ] Neural Net: brown Neural Net: 2 e —
Ground Truth: broccoli Ground Truth: brown Ground Truth: 2 i

What is on top of the

7 D —— e What is the table What are people sitting
refrigerator? wearing? number? under in the back?
Neural Net: magnets Wemmeal, ke ARaibn Neural Net: 4 Neural Net: bench
Ground Truth: cereal Ground Truth: girl scout | Ground Truth:40 Ground Truth: tent

https://avisingh599.qgithub.io/deeplearning/visual-ga/



https://avisingh599.github.io/deeplearning/visual-qa/

RNNs

» work well for sequential data
— time series (with low sampling rate)
— texts (translation, discourse, sentiment, ...)

» support variable-length input
— including long-term dependencies

 are hard to parallelize



Introspection



Types of Introspection

layer-wise relevance propagation (LRP)
deep Taylor decomposition
data

feature visualization

ML btackbox

—

explanation

decision

-

shark

b o ¥



Feature Visualization

feature visualization by optimization
(find the input that optimizes a particular part of the network)
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Feature Visualization

https://distill.pub/2017/feature-visualization/
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https://distill.pub/2017/feature-visualization/

Feature Visualization

softmax

Neuron Channel Layer/DeepDream Class Logits Class Probability

layer]n [x,v,2] layern [:,:,2] layern [:,:,: 13 pre_ softmax[k] softmax[k]

https://distill.pub/2017/feature-visualization/
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https://distill.pub/2017/feature-visualization/

Feature Visualization

What's the main problem with the (vanilla) optimization approach?

How do we solve this?

unregularized optimization is unnatural

regularization methods

frequency transformation learned
penalization robustness prior

14



Layer-wise Relevance Propagation
(LRP) forward pass

input > output

T )

relevance propagation
heatmap < : output
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[Montavon et al. (2017). Explaining nonlinear classification decisions with deep Taylor decomposition.]
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Deep Taylor Decomposition and LRP

What's the difference?

deep Taylor decomposition layer-wise relevance propagation
(1) _ ()f (LI+1) Zij (I4+1)
Rd — (X o xO)(d) . Ox (xo) Riej — Rj’
(@) %
* root point x, must be determined * no root point needed
« computationally efficient (backprop) « computationally expensive
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Other Ways of Propagating Output
Signals back to the Input

b)

Forward pass

a) Forward pass
Input image f° — ! HH==-H'> Iz

[Springenberg et al. (2014). Striving for Simplicity: The All Convolutional Net]
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Other Ways of Propagating Output
Signals back to the Input

a) Forward pass 1o | b) 1|1]s
i 0 T dans -1 L
Input image f f > 15 f : Forward pass 1=l
Feature map | 31214
Backward pass
Reconstructed - HI_ ofof | |
image R’ L g o g 512 | & |

[Springenberg et al. (2014). Striving for Simplicity: The All Convolutional Net]



Other Ways of Propagating Output
Signals back to the Input

a) Forward pass T | b) 11ls
i p— T dan i1} L
Input image f f > 15 f : Forward pass sl —
Feature map | 312)4
Backward pass
Reconstructed - ojo |
: 0 <A R' ' |HR""’ R"
Image R ol 2 |
|
____________________ |
<) activation: I = relu(fl) = max(f!,0) :
ione Dl l 1+1 afeut |
backpropagation: R; = (fZ > ()) . Ri'*‘ , where RiH = 0f.’+1 |
backward I _  plt1 |
'deconvnet': R, = R, |
. |
uided l
) R =(f{>0)- RN
|

backpropagation: ~

[Springenberg et al. (2014). Striving for Simplicity: The All Convolutional Net]



Other Ways of Propagating Output

Signals back to the Input

a)

Input image f’ —

Reconstructed
image R’

activation:
backpropagation:

backward
'deconvnet':

guided
backpropagation:

[Springenberg et al. (2014). Striving for Simplicity: The All Convolutional Net]

Forward pass

fl N . fl.—l

->

Backward pass

<A r*H- R

fi* = retu(f}) = max(f{,0)

R = (fl > 0)- R, where RI*! =

. —
|
—~~
Sh
V
o
~—

° I

fL

Feature map

|
|
0 |
|
|

|
afout |
CafH

b)

Forward pass

Backward pass:
backpropagation

Backward pass:
“deconvnet”

Backward pass:
guided
backpropagation

11-1]5
2 |-5]-7
31 2]) 4
210}|-1
610}0
oj-1§3
0og3]o0
610]1
210]3
ogoyjo

610)0

0O§J0]|3

1105
210})0
02|14
213 |1
6f1-3|1
21-1}|3
2131
61311
21-1}|3
213 ]-1
61-311
21-1]3

20



GradCAM: Gradient-weighted
Class Activation Mapping

) KIS WAk
L)
= "‘ " 1 ’1 J
| K w * o
\ 1 T o
e\ ; :
4 , § g
. "
) S N

(a) Original Image (c) Grad-CAM *Cat’

global average pooling

ay = % Z Z %W LGrag-cam = ReLU (2}{; OézAk>
i

k
0AF

G o
v

: ) linear combination
gradients via backprop

importance of feature map A" combine all feature maps A"
for class c in one layer as weighted sum
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GradCAM: Gradient-weighted
Class Activation Mapping

(g) Original Image (i) Grad-CAM ‘Dog’

[Selvaraju et al. (2016). Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
Localization.]
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GradCAM: Gradient-weighted
Class Activation Mapping

(a) Original Image (b) Guided Backprop ‘Cat’ (¢) Grad-CAM ‘Cat’ (d) Guided Grad-CAM ‘Cat’

(g) Original Image (h) Guided Backprop ‘Dog’ (i) Grad-CAM ‘Dog’ (j) Guided Grad-CAM ‘Dog’

[Selvaraju et al. (2016). Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
Localization.]
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Sanity Checks for Introspection

Cascading randomization

.. c
riginal Im °
Original Image o * from top to bottom layers
g () - (] (2] (]
G ° % x X % X
S . , b N N 9,
X (3] Q2 Q2 [v] ©
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[Adebayo et al. (2018). Sanity Checks for Saliency Maps.]
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Problems

 these models

— sometimes require particular architectures
(e.g. only 2D-convolution with max-pooling)

— mostly use RelL.Us and a positive input space
(which pixels positively influence an output class)

— are mostly evaluated only for images
(visually interpretable)

* not well applicable for

— other activation functions (allowing negative
activation)

— real-valued input space (negative values)
— visually hardly interpretable data (e.g. waveforms)

25



Introspection for

Speech Processing
Models

26



Speech Recognizer on a Budget

 data:
— use only free / public datasets

* model with limited compute resources:
— single (consumer-level) GPU for training
— not more than a few days for training
— real-time capability during deployment

e loss function

27



Training Data (English)

* LibriSpeech Corpus http://www.openslr.org/12/
—~1000h annotated audio
— from public domain audio books
— semi-automatically cut into phrases

— good recording quality

"LibriSpeech: an ASR corpus based on public domain audio books",
V. Panayotov, G. Chen, D. Povey and S. Khudanpur, ICASSP 2015

28


http://www.openslr.org/12/

Spectrogram

Input

7

Concord returned to its place amidst the tents.

0
o
o
<

2048

1024
512
256
128

(ejeos-60j) \Aoc_m:cm.c

—105

time (s)
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Wav2l etter

(Facebook Al, 2016)

* 11 CNN layers
o ~ 25 Mio parameters

convolution ~
¢ 50 Iette I'S / S kw=48, sw=2 2s
ic=128, oc=256
convolution
kw=7, sw=1
7X {ic=256, oc=256
¢ 1 '2 dayS Of tral n | ng convolution
kw=32, sw=1
. ic=256, 0c=2048
(Geforce 1080 Ti) , :
convolution
kw=1, sw=1
ic=2048, 0c=2048
convolution I
R. Gollobert, C. Puhrsch & G. Synnaeve. 2016. e w2
Wav2|ett.er: an end-to-end convnet-based speech recognition system. ’ |
http://arxiv.org/abs/1609.03193 N C C E o A M M I o
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Learned Patterns (layer 1)

weight weights  weights weight weights  weights
difference German English  difference German English

—

plosives
like t or k

rising pitch

| S
weight difference weight
0.0 0.05 0.1 0.15 02 24 -18 -12 06 0 06 1.2

end of a sibilant
like s

>

frequency
(Mel-scaled)

time

falling pitch
in vowels
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Typical Introspection Approaches

A4
Input —>> I —» Output  ‘cat’
[ 3 blackbox /
N 4 e — -
~ — = ——

visualization in the input space

saliency maps activation maximization (AM)
back—pro;ectlng the predlcted class Optimize mput to maX|maIIy actlvate parts of network

Neuron Channel Class Logits Class Probability
(a) Original Image (b) Guided Backprop ‘Cat’ (c) Grad-CAM “Cat’ layer [x,y,z] layer [:,:,z] layer [:,:,: 72 pre_softmax[k] softmax [k]

[Selvaraju et al., 2016] [https://distill.pub/2017 [feature-visualization/]

32



Does this also work

for speech recognition?

mel-scaled
frequency
(kHz) ™~

=
N W B o~

1%

0.5 .

sensitivity layer-wise relevance
analysis propagation (LRP)
! :
gt g
B s
b, oy &
T T = — T T I.-- T
0.5 1 1.5 0.5 1 1.5 2
time (s) time (s)

[Krug & Stober, 2018 at EMNLP]

saliency maps on the input and activation maximization
are not easily interpretable for speech
audio is time series (of spectrogram frames)
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Event-Related Potentials
(ERPs)

34



Event-Related Potentials (ERPs)

“Scalp-recorded neural activity that is
generated in a given neuroanatomical module
when a specific computational operation is
performed.”

Luck (2005). An Introduction to the Event-Related Potential Technique.
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Electroencephalography (EEG)

Fpl P2 Fp2

AF7 AF8
AF3  AFz  AF4

F7 F8
F5> F3 F1 Fz F2 F4 F6

Fc2 Fca Fce FT8

FT7 FC5 Fc3 Fc1

T7 C5 C3 (1 C2 C4 Ce6 T8

Tp7 CP5 CP3 CP1 CP2 CP4 cP6 Tpg

P3 P1 Pz P2 P4
P7 P> P6 PS

PO3  poy PO4

9 PO7 PO8 P1@

01 02

Oz

4

64-electrodes cap (Biosemi)
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data (uV)

EEG Visualization

20

time series

(temporal view)
Subject PO1 - Cue ERP

15}

10}

05F

o
o

-2.0

64 EEG channels

|
click;event

-2

00

-100

Ol = = = e e e = = = = e ==

100 200
time (ms)

topographic map
(spatial view)
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multiple recordings including the same word

ERP-Like Analysis

“ein”

frequency (mel scaled)

time

.
;
| v

averaging neuron activations across inputs

y

Y

artificial neuron activation

+ approximate time frame !

of the spoken word .

filters of highest activation

within this time frame
[ O [} [

|

- neuron activations are deterministic
- variance lies in the stimuli

(differences in context, talking speed, pronounciation)

38



ERP-Like Analysis

problem:

filters are learned
without particular order

250 filters of layer 1

39



ERP-Like Analysis

re-arrange filters

by similarity using a o , i D
self-organizing map , |

| 8L [

blue areas: beginning or ending of sounds, percussive sounds
red areas: rising and falling pitches in different frequencies
noisy sounds

40



ERP-Like Analysis

EEG equivalent:

blue areas:
red areas:

-

[]

activation map

beginning or ending of sounds, percussive sounds
rising and falling pitches in different frequencies

noisy sounds

41



German

filter activation

ERP-Like Analysis

©
o

weight

m o m © o

o o o o OI
[ ]

o
.....-.....-... )
O

e e i i n n n n n
most frequently predicted letter for each time step

filters activated most

42




ERP-Like Analysis

0.9
0.6
0.3
0.0-
0.3
0.6
0.9

German
filter activation

e e i i n n n n n

most frequently predicted letter for each time step

filters activated most
in both languages

EEEEENEERREEEEE [ | |, .

English
filter activation
(0]

a a n n n n d
most frequently predicted letter for each time step

- highly similar neuron activations in English and German, but language-specific predictions
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Topographic Filter Maps

HEHHI'H-%-H"E

pACSRacdatiR
il 3
IIHIII.IHIIIIIII

neighborhoods of
similar filters

aaNONeS
....-..“ .‘.-"-.- K. Kavukcuoglu, R. Fergus & Y. LeCun.

arning in ant features through topographic filter maps."
C mp uter V n and Pattern Recognition, 2009. CVPR 2009.
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Deeper Analysis:
Neuron Activation Profiles

(NAPs)

45



Introspection for Audio Data

* We have
... little intuition about input signal

... more intuition about the output
‘SPEECH’ - /S P IY CH/

46



Introspection for Audio Data

 |nstead of saliency maps or activation
maximization:

— obtain layer-wise class-specific network responses
— compare their similarities to human intuition

®
@ 9 @ ©
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Deriving
Phoneme
Annotations

CTC
decoding

grapheme

to phoneme:

translation

| duplicate
removal

______ ||| sequence
alignment

.............. //\\

P UW UW R

Krug, Knaebel & Stober: “Neuron Activation Profiles for Interpreting Convolutional Speech Recognition Models*

In: IRASL Workshop @ NeurlPS 2018.
48



Characteristic Network Responses

center at highest importance:
argmax,(|gradient| © activation)

,_,
N WA v~
| | | | | 11

o
U

mel-scaled frequency (kHz)

funy

o
[t

o

R N WS oD o
| I I (S SN N I I |

I T
I { i
I I [
I
1 1 I
I
I | [
| : X I
I : N
I ' [
: I
I (=t .l
I = L - [
& - s
1 k. W g I
1 m
T
' |
1 i
I
[ i
I I
I |
I |
I
[ :
I
: i
I I
1
I 1
I I
I T r T i
0s 05s 1%I 1.5s

speech alignment

0"1
0 11—
—» predicted 50 4
grapheme
100 -
[
o
>S5
Q ~
< 150 -
compute
gradients
200
250 J e - - ..'_ 7'3 -OI.2 6 +(I)2
02 0 +0.2 time (s)
time (s)

response averaging
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Gradient-adjusted
Neuron Activation Profiles (GradNAPs)

averaging and normalization > apply gradient mask
average of average of average of gradient-adjusted
aligned activations aligned activations aligned gradients Neuron Activation Profile
(same group) (complete data set) (same group) (GradNAP)
..,'I = '7.‘—0. I1".I.I-‘_ e _'._ 3 — — B
50
100 -
S - = %k =
5
(0]
< 150 -
200
250 drm— e v 0.2 0 +0.2 ol 0.2 0 +0.2
1 ] I I 1 ] H I I I .
0.2 0 +0.2 0.2 0 +0.2 time (s) 0.2 0 +0.2 time (s)
time (s) time (s) time (s)

use sensitivity-based alignment
use sensitivity values to mask out activations of low relevance for prediction
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Clustering of NAPs in 9t" Layer

letters phonemes

4

N

w
O XNA®DE2ZOU40LWT<IZ<

|||||||||||||||||||||||||

IIIIIIIIIIIIIIIIIIIIIII
Q) XZKBPMNGDTCSFVHWYOUEAILR gmu—‘i—]:;w §<W§§2<—<u —%w

* clusters of similar phonemes emerge
* no distinct clustering of NAPs for letters

szaok

distance
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Clustering of NAPs in 10t" Layer

letters phonemes

w
distance

XKSZYUOEAI HBWMLRDTGNCPFV])]Q

« phoneme clusters become more distinct
» cluster of vowel letters emerges
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Clustering of NAPs

convolutional ) .. )
speech recognition clustering of Neuron Activation Profiles
architecture based on Wav2Letter [Collobert et al, 2016] Iette rS ph On emes

17 S0 - .
Labd | A%/ oy 44 . TJ
elscated o | | % ¢ | | ¢ s
et SOOI A : . * no clusters of similar
i £ il ! « phonemes or letters
' : "+ layer only detects
convolution ~2s i . basic acoustic features
kw=48, sw=2 M
ic=128, 0c=256 v ’

convolution
7X kw_7 SW‘l BKLWRYMVAHEIGDNSPOUFCT)JQXZ
=7, sw=
ic=256, oc=256

Mmmmananll [Memmsmaesn a0

convolution :
- kw=32,sw=1 d © .
ic=256, 0c=2048 & . * clusters of similar
luti H
| zofgvmloszvg:z phonemes emerge
Ic= , OC= [ 3 . .
convolution : ~ * no distinct cluster
(<2048, oees? . of similar letters
- AA A NND:-- i
CTCdeCOdlng‘ . ) Q)JXZKBPMNGDTCSFVHWYOUEAI LR
AND ; . * clusters of similar
- phonemes become
i blems: more distinct
SPECIIC problems: _ mdl= ~ « clusters of vowel and
* (1D-)convolutional architecture 2 consonant letters
* exact time of predicted letter in

© emerge

spectrogram cannot be determined

XKSZYUOEAIHBWMLRDTGNCPFV]Q

Krug, Knaebel & Stober: “Neuron Activation Profiles for Interpreting Convolutional Speech Recognition Models*
In: IRASL Workshop @ NeurlPS 2018. 53



Recap: Introspection

feature visualization (optimize input)

Neuron Class Logits

Class Probability

softmax (k]

layern[x,y,z] pre_softmax[k]

feature topography neuron actlvatlon proflles
(improve mterpretablllty)
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(a) Original Image

Original Image

Gradient :

Gradient-SG

Gradiento® Input

Guided
Back-propagation

Guided GradCAM

Integrated Gradients

Integrated Gradients-SG

(b) Guided Backprop ‘Cat’

=> sanity checks!

Cascading randomization
from top to bottom layers

relevance / saliency analysis (for given input)

(c) Grad-CAM ‘Cat’

mlxed_7a
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Hands-on: Distill / Lucid Tutorials

o Start at
https://distill.pub/2017/feature-visualization/

» All images were generated using Lucid
https://qgithub.com/tensorflow/lucid
(Scroll down for a list of notebooks!)
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https://distill.pub/2017/feature-visualization/
https://github.com/tensorflow/lucid

