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CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

information flow forward in time (computing outputs and losses) and backward
in time (computing gradients) by explicitly showing the path along which this
information flows.

10.2 Recurrent Neural Networks

Armed with the graph unrolling and parameter sharing ideas of Sec. , we can10.1
design a wide variety of recurrent neural networks.
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Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target y . When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes ŷ = softmax(o) and compares this to the target y . The RNN has input to hidden
connections parametrized by a weight matrix U , hidden-to-hidden recurrent connections
parametrized by a weight matrix W , and hidden-to-output connections parametrized by
a weight matrix V . Eq. defines forward propagation in this model.10.8 (Left) The RNN
and its loss drawn with recurrent connections. (Right) The same seen as an time-unfolded
computational graph, where each node is now associated with one particular time instance.

Some examples of important design patterns for recurrent neural networks
include the following:

• Recurrent networks that produce an output at each time step and have
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Figure 10.4: An RNN whose only recurrence is the feedback connection from the output
to the hidden layer. At each time step t , the input is x t, the hidden layer activations are
h( )t , the outputs are o( )t , the targets are y( )t and the loss is L( )t . (Left) Circuit diagram.
(Right) Unfolded computational graph. Such an RNN is less powerful (can express a
smaller set of functions) than those in the family represented by Fig. . The RNN10.3
in Fig. can choose to put any information it wants about the past into its hidden10.3
representation h and transmit h to the future. The RNN in this figure is trained to
put a specific output value into o , and o is the only information it is allowed to send
to the future. There are no direct connections from h going forward. The previous h
is connected to the present only indirectly, via the predictions it was used to produce.
Unless o is very high-dimensional and rich, it will usually lack important information
from the past. This makes the RNN in this figure less powerful, but it may be easier to
train because each time step can be trained in isolation from the others, allowing greater
parallelization during training, as described in Sec. .10.2.1
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Figure 10.10: A conditional recurrent neural network mapping a variable-length sequence
of x values into a distribution over sequences of y values of the same length. Compared
to Fig. , this RNN contains connections from the previous output to the current state.10.3
These connections allow this RNN to model an arbitrary distribution over sequences of y
given sequences of of the same length. The RNN of Fig. is only able to representx 10.3
distributions in which the y values are conditionally independent from each other given
the values.x
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conditional distribution P(y(1), . . . ,y( )τ | x(1) , . . . ,x( )τ ) that makes a conditional
independence assumption that this distribution factorizes as



t

P (y ( )t | x(1) , . . . ,x( )t ). (10.35)

To remove the conditional independence assumption, we can add connections from
the output at time t to the hidden unit at time t+ 1, as shown in Fig. . The10.10
model can then represent arbitrary probability distributions over the y sequence.
This kind of model representing a distribution over a sequence given another
sequence still has one restriction, which is that the length of both sequences must
be the same. We describe how to remove this restriction in Sec. .10.4
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Figure 10.11: Computation of a typical bidirectional recurrent neural network, meant
to learn to map input sequences x to target sequences y , with loss L( )t at each step t.
The h recurrence propagates information forward in time (towards the right) while the
g recurrence propagates information backward in time (towards the left). Thus at each
point t , the output units o( )t can benefit from a relevant summary of the past in its h( )t

input and from a relevant summary of the future in its g( )t input.
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recurrence, it requires that the output units capture all of the information about
the past that the network will use to predict the future. Because the output units
are explicitly trained to match the training set targets, they are unlikely to capture
the necessary information about the past history of the input, unless the user
knows how to describe the full state of the system and provides it as part of the
training set targets. The advantage of eliminating hidden-to-hidden recurrence
is that, for any loss function based on comparing the prediction at time t to the
training target at time t, all the time steps are decoupled. Training can thus be
parallelized, with the gradient for each step t computed in isolation. There is no
need to compute the output for the previous time step first, because the training
set provides the ideal value of that output.

h(t−1)h(t−1)

W
h( )th( )t . . .. . .

x(t−1)x(t−1) x( )tx( )t x( )...x( )...

W W

U U U

h( )τh( )τ

x( )τx( )τ

W

U

o( )τo( )τy( )τy( )τ

L( )τL( )τ

V

. . .. . .

Figure 10.5: Time-unfolded recurrent neural network with a single output at the end
of the sequence. Such a network can be used to summarize a sequence and produce a
fixed-size representation used as input for further processing. There might be a target
right at the end (as depicted here) or the gradient on the output o( )t can be obtained by
back-propagating from further downstream modules.

Models that have recurrent connections from their outputs leading back into
the model may be trained with teacher forcing. Teacher forcing is a procedure
that emerges from the maximum likelihood criterion, in which during training the
model receives the ground truth output y( )t as input at time t + 1. We can see
this by examining a sequence with two time steps. The conditional maximum

likelihood criterion is

log p

y (1),y(2) | x(1),x(2)


(10.15)
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Figure 10.9: An RNN that maps a fixed-length vector x into a distribution over sequences
Y. This RNN is appropriate for tasks such as image captioning, where a single image is
used as input to a model that then produces a sequence of words describing the image.
Each element y( )t of the observed output sequence serves both as input (for the current
time step) and, during training, as target (for the previous time step).
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Figure 10.14: A recursive network has a computational graph that generalizes that of the
recurrent network from a chain to a tree. A variable-size sequence x(1),x(2) , . . . ,x( )t can
be mapped to a fixed-size representation (the output o), with a fixed set of parameters
(the weight matrices U , V , W ). The figure illustrates a supervised learning case in which
some target is provided which is associated with the whole sequence.y
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recurrence, it requires that the output units capture all of the information about
the past that the network will use to predict the future. Because the output units
are explicitly trained to match the training set targets, they are unlikely to capture
the necessary information about the past history of the input, unless the user
knows how to describe the full state of the system and provides it as part of the
training set targets. The advantage of eliminating hidden-to-hidden recurrence
is that, for any loss function based on comparing the prediction at time t to the
training target at time t, all the time steps are decoupled. Training can thus be
parallelized, with the gradient for each step t computed in isolation. There is no
need to compute the output for the previous time step first, because the training
set provides the ideal value of that output.

h(t−1)h(t−1)

W
h( )th( )t . . .. . .

x(t−1)x(t−1) x( )tx( )t x( )...x( )...

W W

U U U

h( )τh( )τ

x( )τx( )τ

W

U

o( )τo( )τy( )τy( )τ

L( )τL( )τ

V

. . .. . .

Figure 10.5: Time-unfolded recurrent neural network with a single output at the end
of the sequence. Such a network can be used to summarize a sequence and produce a
fixed-size representation used as input for further processing. There might be a target
right at the end (as depicted here) or the gradient on the output o( )t can be obtained by
back-propagating from further downstream modules.

Models that have recurrent connections from their outputs leading back into
the model may be trained with teacher forcing. Teacher forcing is a procedure
that emerges from the maximum likelihood criterion, in which during training the
model receives the ground truth output y( )t as input at time t + 1. We can see
this by examining a sequence with two time steps. The conditional maximum

likelihood criterion is

log p

y (1),y(2) | x(1),x(2)


(10.15)
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o(t−1)o(t−1) o( )to( )t o( +1)to( +1)t

L(t−1)L(t−1) L( )tL( )t L( +1)tL( +1)t

y(t−1)y(t−1) y( )ty( )t y( +1)ty( +1)t

h(t−1)h(t−1) h( )th( )t h( +1)th( +1)t
WW W W

s( )...s( )...
h( )...h( )...
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y( )...y( )...
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Figure 10.9: An RNN that maps a fixed-length vector x into a distribution over sequences
Y. This RNN is appropriate for tasks such as image captioning, where a single image is
used as input to a model that then produces a sequence of words describing the image.
Each element y( )t of the observed output sequence serves both as input (for the current
time step) and, during training, as target (for the previous time step).
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encoder (reader): 
read input sequence, 
generate hidden state

decoder (writer): 
generate output sequence 
from hidden state

recurrent connections
from [previous] output

recurrent connections
between hidden units

encoder-decoder architecture



LSTM

The repeating module in an LSTM contains four interacting layers.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 5

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


6

Generate Image Captions
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Answer Visual QuestionsVisual Question Answering

https://avisingh599.github.io/deeplearning/visual-qa/ https://avisingh599.github.io/deeplearning/visual-qa/

https://avisingh599.github.io/deeplearning/visual-qa/


• work well for sequential data
– time series (with low sampling rate)
– texts (translation, discourse, sentiment, ...)

• support variable-length input
– including long-term dependencies

• are hard to parallelize

8

RNNs



Introspection

9
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Types of Introspection

feature visualization layer-wise relevance propagation (LRP)
deep Taylor decomposition
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Feature Visualization

feature visualization by optimization
(find the input that optimizes a particular part of the network)
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Feature Visualization

https://distill.pub/2017/feature-visualization/

https://distill.pub/2017/feature-visualization/
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Feature Visualization

https://distill.pub/2017/feature-visualization/

https://distill.pub/2017/feature-visualization/
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Feature Visualization

What’s the main problem with the (vanilla) optimization approach?
How do we solve this?

frequency
penalization

transformation
robustness

learned
prior

unregularized optimization is unnatural

VS

regularization methods
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Layer-wise Relevance Propagation 
(LRP)

[Montavon et al. (2017). Explaining nonlinear classification decisions with deep Taylor decomposition.]
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Deep Taylor Decomposition and LRP

What’s the difference?

• root point !" must be determined
• computationally efficient (backprop)

• no root point needed
• computationally expensive

deep Taylor decomposition layer-wise relevance propagation
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Other Ways of Propagating Output 
Signals back to the Input

[Springenberg et al. (2014). Striving for Simplicity: The All Convolutional Net]
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Other Ways of Propagating Output 
Signals back to the Input

[Springenberg et al. (2014). Striving for Simplicity: The All Convolutional Net]
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Other Ways of Propagating Output 
Signals back to the Input

[Springenberg et al. (2014). Striving for Simplicity: The All Convolutional Net]
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Other Ways of Propagating Output 
Signals back to the Input

[Springenberg et al. (2014). Striving for Simplicity: The All Convolutional Net]
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GradCAM: Gradient-weighted 
Class Activation Mapping

importance of feature map !"
for class #

combine all feature maps !"
in one layer as weighted sum
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GradCAM: Gradient-weighted 
Class Activation Mapping

[Selvaraju et al. (2016). Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
Localization.]
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GradCAM: Gradient-weighted 
Class Activation Mapping

[Selvaraju et al. (2016). Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
Localization.]
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Sanity Checks for Introspection

[Adebayo et al. (2018). Sanity Checks for Saliency Maps.]



• these models
– sometimes require particular architectures

(e.g. only 2D-convolution with max-pooling)
– mostly use ReLUs and a positive input space

(which pixels positively influence an output class)
– are mostly evaluated only for images 

(visually interpretable)
• not well applicable for

– other activation functions (allowing negative 
activation)

– real-valued input space (negative values)
– visually hardly interpretable data (e.g. waveforms)

25

Problems



Introspection for
Speech Processing 
Models

26



• data:
– use only free / public datasets

• model with limited compute resources:
– single (consumer-level) GPU for training
– not more than a few days for training
– real-time capability during deployment

• loss function

27

Speech Recognizer on a Budget



• LibriSpeech Corpus http://www.openslr.org/12/

– ~1000h annotated audio
– from public domain audio books
– semi-automatically cut into phrases
– good recording quality

28

Training Data (English)

"LibriSpeech: an ASR corpus based on public domain audio books",
V. Panayotov, G. Chen, D. Povey and S. Khudanpur, ICASSP 2015

http://www.openslr.org/12/
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Input: Spectrogram

time (s)

“Concord returned to its place amidst the tents.”

fre
qu

en
cy

 (l
og

-s
ca

le
)

audio source: Alexandre Dumas “Ten Years Later”, chapter 86 (LibriSpeech)



• 11 CNN layers
• ~ 25 Mio parameters
• 50 letters / s

• 1-2 days of training
(Geforce 1080 Ti)
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Wav2Letter

Introspection for convolutional 
Automatic Speech Recognition
Andreas Krug1 & Sebastian Stober2

1 University of Potsdam, Germany – Research Focus Cognitive Sciences
2 Otto-von-Guericke-University Magdeburg, Germany – Artificial Intelligence Lab
contact: ankrug@uni-potsdam.de, stober@ovgu.de

local introspection

normalized averaging of aligned inputs (NAvAI)

convolutional ASR

convolution
kw=48, sw=2

ic=128, oc=256

convolution
kw=7, sw=1

ic=256, oc=256

convolution
kw=32, sw=1

ic=256, oc=2048

convolution
kw=1, sw=1

ic=2048, oc=2048

convolution
kw=1, sw=1

ic=2048, oc=32

‘A’

7x

maximum relevance

Input
spectrograms 
predicted as the same letter

Alignment 
centering to time of strongest
sensitivity/relevance
by cropping

Averaging
compute average 
over aligned snippets 
predicted as the same letter

Normalization
subtract the average 
over all aligned snippets

optimizing input to maximize neuron activations

• fully 1D-convolutional
• based on Wav2Letter
• prediction is not aligned 

to spectrogram (CTC decoding)

‘A’ ‘T’

without
alignment

aligned at
min. sensitivity

aligned at
max. relevance

• optimal input is interpretable in lower layers
• neurons in higher layers are maximally activated by artificial inputs

gradient of prediction score w.r.t. the input
tracing back, which part of the input is 
relevant for the prediction

sensitivity analysis
layer-wise relevance

propagation (LRP)

• alignment is necessary
• sensitivity performs better than LRP

‘A’ formants at 700 Hz and 2700 Hz
‘T’ quick change from high to low intensities

for all frequencies

sensitivity LRP

global introspection

… C C E _ _ A M M I …

(Facebook AI, 2016)

R. Collobert, C. Puhrsch & G. Synnaeve. 2016. 
Wav2letter: an end-to-end convnet-based speech recognition system. 
http://arxiv.org/abs/1609.03193

~ 2s
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Learned Patterns (layer 1)

Intention End-to-end training of automated speech recognition (ASR) Faster training on consumer-grade resources 

Problem massive data and compute resources required Requiring less training data to achieve the same accuracy 

Solution transfer learning based on model adaptation Lowering cost of training ASR models in other languages 

Convolut ion
kw 1= 48, sw 1= 2
ic1= 128, oc1= 250

Convolut ion
kw 2= 7, sw 2= 1

ic2= 250, oc2= 250

Convolut ion
kw 9= 32, sw 9= 1

ic9= 250, oc9= 2000

Convolut ion
kw 10= 1, sw 10= 1

ic10= 2000, oc10= 2000

Convolut ion
kw 11= 1, sw 11= 1

ic11= 2000, oc11= 29

Convolut ion
kw 4= 7, sw 4= 1

ic4= 250, oc4= 250

Convolut ion
kw 3= 7, sw 3= 1

ic3= 250, oc3= 250

Convolut ion
kw 6= 7, sw 6= 1

ic6= 250, oc6= 250

Convolut ion
kw 8= 7, sw 8= 1

ic8= 250, oc8= 250

Convolut ion
kw 5= 7, sw 5= 1

ic5= 250, oc5= 250

Convolut ion
kw 7= 7, sw 7= 1

ic7= 250, oc7= 250

Basel ine System
(Engl ish)

Convolut ion
kw 1= 48, sw 1= 2
ic1= 128, oc1= 250

Convolut ion
kw 2= 7, sw 2= 1

ic2= 250, oc2= 250

Convolut ion
kw 9= 32, sw 9= 1

ic9= 250, oc9= 2000

Convolut ion
kw 10= 1, sw 10= 1

ic10= 2000, oc10= 2000

Convolut ion
kw 11= 1, sw 11= 1

ic11= 2000, oc11= 3 3

Convolut ion
kw 4= 7, sw 4= 1

ic4= 250, oc4= 250

Convolut ion
kw 3= 7, sw 3= 1

ic3= 250, oc3= 250

Convolut ion
kw 6= 7, sw 6= 1

ic6= 250, oc6= 250

Convolut ion
kw 8= 7, sw 8= 1

ic8= 250, oc8= 250

Convolut ion
kw 5= 7, sw 5= 1

ic5= 250, oc5= 250

Convolut ion
kw 7= 7, sw 7= 1

ic7= 250, oc7= 250

tr
ai

n 
to

p 
la

ye
rs

 f
or

 G
er

m
an

 d
at

a

Adapted System
(Ger man)

kw= ker nel  w idth
ic= input  channels

sw= st r ide w idth
oc= output  channels

fr eeze
weights

of k
bot tom
layer s

M el -scal ed
sp ect r og r am

( En g l i sh )

M el -scal ed
sp ect r og r am

( Ger m an )

Transfer Learning for Speech Recognition on a Budget 

Training on English corpora Model adaptation for German 

How do weights change? 

lots of labeled data 
needed, but only 
available in English 
 

dataset: 1000h 
LibriSpeech Corpus 
 
Architecture: 
• convolutional 
• based on 

Wav2Letter 
• using CTC loss 

function 
• simple compared 

to DeepSpeech 
• low resource 

footprint 
 
language model 
KenLM to reduce 
spelling mistakes 
 

reduced amount of non-English training data while achieving competitive accuracy 

dataset: 383h Bavarian Archive for Speech Signals & Radeck-Arneth et al. ‘15 
 

Some very high WERs are  
due to heavy German dialect that is  
particularly problematic with numbers. 

freezing 0 layers performs best 
freezing reduces required GPU memory 
(k=0: >10.4 GB, k=8: <5.5 GB) 

only little improvement when using more 
than 100 hours of German speech data 

• small adaptations to network weights are sufficient for good performance 
• outer layers need smaller changes than inner layers 

Does freezing layers help? 

expected: “sechsundneunzig” 
predicted: “sechs un nmeunsche” 
LER 47%, WER 300%, loss: 43.15 

plosives  
like t or k  

falling pitch  
in vowels rising pitch 

end of a sibilant  
like  s 

Julius Kunze, Louis Kirsch, Ilia Kurenkov, Andreas Krug, Jens Johannsmeier, Sebastian Stober 

Shorter training times? 

How much data is needed? 

What are the filters detecting? 

reduced training time  
for achieving the same loss  

Which problems occur? 

Simple convolutional 
architecture based on 
Wav2Letter with a low 
resource footprint 
 
simpler model compared 
to DeepSpeech (CNN 
instead of RNN) 
 
CTC loss function maps the 
output of the network to 
labels 
 

contact juliuskunze@gmail.com, mail@louiskirsch.com, 
{kurenkov,ankrug,johannsmeier,sstober}@uni-potsdam.de 

source code github.com/transfer-learning-asr/transfer-learning-asr 

website www.uni-potsdam.de/mlcog 

fre
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time 

weight 
difference 

weights 
German 

weights 
English 

weight 
difference 

weights 
German 

weights 
English 
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Typical Introspection Approaches

Input OutputDNN 

blackbox

visualization in the input space

saliency maps

back-projecting the predicted class

activation maximization (AM)

Optimize input to maximally activate parts of network 

[Selvaraju et al., 2016] [https://distill.pub/2017/feature-visualization/]

‘cat’
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Does this also work 
for speech recognition?

… A …
• saliency maps on the input and activation maximization 

are not easily interpretable for speech
• audio is time series (of spectrogram frames)

black
box

[Krug & Stober, 2018 at EMNLP]



Event-Related Potentials
(ERPs)

34



“Scalp-recorded neural activity that is 
generated in a given neuroanatomical module 
when a specific computational operation is 
performed.”

Luck (2005). An Introduction to the Event-Related Potential Technique.

35

Event-Related Potentials (ERPs)
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Electroencephalography (EEG)

64-electrodes cap (Biosemi)
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EEG Visualization

64 EEG channels

time series topographic map
(temporal view) (spatial view)

click event
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ERP-Like Analysis
“ein”
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ERP-Like Analysis
problem:
filters are learned 
without particular order 

250 filters of layer 1
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ERP-Like Analysis
re-arrange filters 
by similarity using a
self-organizing map
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ERP-Like Analysis

activation map

EEG equivalent:
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ERP-Like Analysis
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ERP-Like Analysis
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Topographic Filter Maps
The overall structure of this loss function is depicted in
Fig. 1(b).

2.4. Learning

The goal of learning is to find the optimal value of the ba-
sis functionsD, as well as the value of the parameters in the
regressorW , thus minimizing LIP in Eqn. 4. Learning pro-
ceeds by an on-line block coordinate gradient descent algo-
rithm, alternating the following two steps for each training
sample x.

1. Keeping the parameters W and D constant, minimize
LIP of Eqn. (4) with respect to z, starting from the
initial value provided by the regressor F (x;W ).

2. Using the optimal value of the coefficients z provided
by the previous step, update the parameters W and D
by one step of stochastic gradient descent. The update
is: U ← U − η ∂LIP

∂U
, where U collectively denotes

{W,D} and η is the step size. The columns of D are
then re-scaled to unit norm.

We set α = 1 for all experiments. We found that training the
set of basis functions D first, then subsequently training the
regressor, yields similar performance in terms of recogni-
tion accuracy. However, when the regressor is trained after-
wards, the approximate representation is usually less sparse
and the overall training time is considerably longer.

2.5. Evaluation

Once the parameters are learned, computing the invariant
representation v can be performed by a simple feed-forward
propagation through the regressor F (x;W ), and then prop-
agating z into v through vi =

√

∑

j∈Pi
wjz

2
j . Note that

no reconstruction of x using the set of basis functions D
is necessary any longer. An example of this feed forward
recognition architecture is given in Fig. 6.
The addition of this feed-forward module for predicting

z, and hence, v is crucial to speeding up the run-time per-
formance, since no optimization needs to be run after train-
ing. Experiments reported in a technical report on the non-
invariant version of Predictive Sparse Decomposition [9]
show that the z produced by this approximate representa-
tion gives a slightly superior recognition accuracy to the z
produced by optimizing of LI .
Finally, other families of regressor functions were tested

(using different kinds of thresholding non-linearities), but
the one chosen here achieves similar performance while
having the advantage of being very simple. In fact the fil-
tersM learned by the prediction function closely match the
basis functions D used for reconstruction during training,
having the same topographic layout.

Figure 2. Topographic map of feature detectors learned from nat-
ural image patches of size 12x12 pixels by optimizing LIP a in
Eqn. 4. There are 400 filters that are organized in 6x6 neighbor-
hoods. Adjacent neighborhoods overlap by 4 pixels both horizon-
tally and vertically. Notice the smooth variation within a given
neighborhood and also the circular boundary conditions.

4 8 12

4

8

12

0.250.125

16

16

Figure 3. Analysis of learned filters by fitting Gabor functions,
each dot corresponding to a feature. Left: Center location of fitted
Gabor. Right: Polar map showing the joint distribution of orienta-
tion (azimuthally) and frequency (radially) of Gabor fit.

3. Experiments
In the following section, before exploring the properties

of the invariant features obtained, we first study the topo-
graphic map produced by our training scheme. First, we
make an empirical evaluation of the invariance achieved by
these representations under translations and rotations of the
input image. Second, we assess the discriminative power of
these invariant representations on recognition tasks in three
different domains: (i) generic object categories using the
Caltech 101 dataset; (ii) generic object categories from a
dataset of very low resolution images and (iii) classification

neighborhoods of 
similar filters

K. Kavukcuoglu, R. Fergus & Y. LeCun.
"Learning invariant features through topographic filter maps." 

Computer Vision and Pattern Recognition, 2009. CVPR 2009.



Deeper Analysis:
Neuron Activation Profiles
(NAPs)

45
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Introspection for Audio Data

• We have
… little intuition about input signal

… more intuition about the output
‘SPEECH’ → /S P IY CH/
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Introspection for Audio Data

• Instead of saliency maps or activation 
maximization:
– obtain layer-wise class-specific network responses
– compare their similarities to human intuition

A

E
T

AO

AW
IY
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Deriving 
Phoneme 
Annotations

Needleman & Wunsch: “A general 
method applicable to the search for 
similarities in the amino acid sequence 
of two proteins.” Journal of molecular 
biology, 48(3):443–453, 1970. 

attention-based encoder-decoder 
encoder: 2 bi-LSTM layers
decoder: global attention + 2 LSTM layers
trained on CMU Pronunciation Dictionary 

Krug, Knaebel & Stober: “Neuron Activation Profiles for Interpreting Convolutional Speech Recognition Models“
In: IRASL Workshop @ NeurIPS 2018.
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Characteristic Network Responses
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speech alignment response averaging

center at highest importance:
argmaxt(|gradient| ⊙ activation) 
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Gradient-adjusted 
Neuron Activation Profiles (GradNAPs)
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• use sensitivity-based alignment 
• use sensitivity values to mask out activations of low relevance for prediction
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Clustering of NAPs in 9th Layer

letters phonemes

• clusters of similar phonemes emerge
• no distinct clustering of NAPs for letters
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Clustering of NAPs in 10th Layer

letters phonemes

• phoneme clusters become more distinct 
• cluster of vowel letters emerges
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Clustering of NAPs

Neuron Activation Profiles for Interpreting

Convolutional Speech Recognition Models

Andreas Krug1, René Knaebel1 & Sebastian Stober2

1 University of Potsdam, Germany – Machine Learning in Cognitive Science Lab
2 Otto-von-Guericke-University Magdeburg, Germany – Artificial Intelligence Lab

contact: {ankrug, rknaebel}@uni-potsdam.de, stober@ovgu.de

Understanding decision processes of deep artificial neural networks is crucial but difficult.
Established introspection techniques are hard to interpret for complex input data (e.g. speech recordings).
An interpretable model should process signals similarly to how a human perceives them.
We developed a method, which visualizes network responses to different groups of inputs, and investigate:
Does a speech recognition model learn phonemes as intermediate representation for predicting text?

research question
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Krug, Knaebel & Stober: “Neuron Activation Profiles for Interpreting Convolutional Speech Recognition Models“
In: IRASL Workshop @ NeurIPS 2018.



Recap: Introspection
feature visualization (optimize input) relevance / saliency analysis (for given input)

=> sanity checks!

The overall structure of this loss function is depicted in
Fig. 1(b).

2.4. Learning

The goal of learning is to find the optimal value of the ba-
sis functionsD, as well as the value of the parameters in the
regressorW , thus minimizing LIP in Eqn. 4. Learning pro-
ceeds by an on-line block coordinate gradient descent algo-
rithm, alternating the following two steps for each training
sample x.

1. Keeping the parameters W and D constant, minimize
LIP of Eqn. (4) with respect to z, starting from the
initial value provided by the regressor F (x;W ).

2. Using the optimal value of the coefficients z provided
by the previous step, update the parameters W and D
by one step of stochastic gradient descent. The update
is: U ← U − η ∂LIP

∂U
, where U collectively denotes

{W,D} and η is the step size. The columns of D are
then re-scaled to unit norm.

We set α = 1 for all experiments. We found that training the
set of basis functions D first, then subsequently training the
regressor, yields similar performance in terms of recogni-
tion accuracy. However, when the regressor is trained after-
wards, the approximate representation is usually less sparse
and the overall training time is considerably longer.

2.5. Evaluation

Once the parameters are learned, computing the invariant
representation v can be performed by a simple feed-forward
propagation through the regressor F (x;W ), and then prop-
agating z into v through vi =

√

∑

j∈Pi
wjz

2
j . Note that

no reconstruction of x using the set of basis functions D
is necessary any longer. An example of this feed forward
recognition architecture is given in Fig. 6.
The addition of this feed-forward module for predicting

z, and hence, v is crucial to speeding up the run-time per-
formance, since no optimization needs to be run after train-
ing. Experiments reported in a technical report on the non-
invariant version of Predictive Sparse Decomposition [9]
show that the z produced by this approximate representa-
tion gives a slightly superior recognition accuracy to the z
produced by optimizing of LI .
Finally, other families of regressor functions were tested

(using different kinds of thresholding non-linearities), but
the one chosen here achieves similar performance while
having the advantage of being very simple. In fact the fil-
tersM learned by the prediction function closely match the
basis functions D used for reconstruction during training,
having the same topographic layout.

Figure 2. Topographic map of feature detectors learned from nat-
ural image patches of size 12x12 pixels by optimizing LIP a in
Eqn. 4. There are 400 filters that are organized in 6x6 neighbor-
hoods. Adjacent neighborhoods overlap by 4 pixels both horizon-
tally and vertically. Notice the smooth variation within a given
neighborhood and also the circular boundary conditions.
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0.250.125
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Figure 3. Analysis of learned filters by fitting Gabor functions,
each dot corresponding to a feature. Left: Center location of fitted
Gabor. Right: Polar map showing the joint distribution of orienta-
tion (azimuthally) and frequency (radially) of Gabor fit.

3. Experiments
In the following section, before exploring the properties

of the invariant features obtained, we first study the topo-
graphic map produced by our training scheme. First, we
make an empirical evaluation of the invariance achieved by
these representations under translations and rotations of the
input image. Second, we assess the discriminative power of
these invariant representations on recognition tasks in three
different domains: (i) generic object categories using the
Caltech 101 dataset; (ii) generic object categories from a
dataset of very low resolution images and (iii) classification

feature topography
(improve interpretability)

neuron activation profiles
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• Start at 
https://distill.pub/2017/feature-visualization/

• All images were generated using Lucid
https://github.com/tensorflow/lucid
(Scroll down for a list of notebooks!)
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Hands-on: Distill / Lucid Tutorials

https://distill.pub/2017/feature-visualization/
https://github.com/tensorflow/lucid

