Neuronale Netze Zusammenfassung

Prof. Dr.-Ing. Sebastian Stober

Artificial Intelligence Lab Institut für Intelligente Kooperierende Systeme Fakultät für Informatik <u>stober@ovgu.de</u>

FACULTY OF COMPUTER SCIENCE

Künstliche Intelligenz & Maschinelles Lernen

Maschinelles Lernen

Maschinelles Lernen (ML) "durch Erfahrung eine Aufgabe besser machen" [1] Daten

Künstliche Intelligenz (KI)

"die Fähigkeit eines Agenten, Ziele in einer großen Breite von Umgebungen zu erreichen" [2]

Optimierung!

[1] T. Mitchell (1997). "Machine Learning", McGraw Hill.

[2] S. Legg; M. Hutter (2007). "Universal Intelligence: A Definition of Machine Intelligence". Minds & Machines. 17 (4): 391–444.

ML Problemklassen

Überwachtes Lernen (supervised learning)

Unüberwachtes Lernen (unsupervised learning)

Bestärkendes Lernen

(reinforcement learning)

Überwachtes Lernen

(feste Lernaufgabe)

- annotierte Trainingsdaten (Beispielein- und Ausgaben)
- Ierne Vorhersagemodell

Unüberwachtes Lernen

(freie Lernaufgabe)

- Trainingdaten ohne Annotationen
- Lerne Struktur der Daten

- a) eigenständiges Ziel (Muster entdecken)
- b) Zwischenschritt der Datenverarbeitung

Bestärkendes Lernen

- Trainingdaten durch Interaktion mit Umgebung
- Lerne Verhalten, welches die kumulative (verzögerte!) Belohnung über die Zeit maximiert

Modell-Kapazität

Capacity

Bewertung & Selektierung von Modellen nur auf der Basis bisher ungesehener Daten!

Bias-Variance Trade-Off

Regularization Techniques

- parameter norm (L1/L2)
- early stopping
- dropout
- more data / data augmentation
- adding noise / denoising
- semi-supervised learning
- multi-task learning
- parameter tying & sharing
- sparse representations
- bagging / ensembles
- DropConnect = randomly set weights to zero
- (layer-wise) unsupervised pretraining
- adversarial training
- •

. . .

Error Factors

https://kevinzakka.github.io/2016/09/26/applying-deep-learning/

Thematische Einordnung

(nicht vollständig!)

- unterschiedliche Neuronentypen
- unterschiedliche Architekturen
- Gemeinsamkeiten?

http://www.asimovinstitute.org/neural-network-zoo/

Graphentheoretische Grundlagen

Graphentheoretische Grundlagen

Ein (gerichteter) **Graph** ist ein Tupel G = (V, E), bestehend aus einer (endlichen) Menge V von **Knoten** oder **Ecken** und einer (endlichen) Menge $E \subseteq V \times V$ von **Kanten**.

Wir nennen eine Kante $e = (u, v) \in E$ gerichtet von Knoten u zu Knoten v.

 $u \xrightarrow{e} v$

Sei G=(V,E) ein (gerichteter) Graph und $u\in V$ ein Knoten. Dann werden die Knoten der Menge

$$\operatorname{pred}(u) = \{ v \in V \mid (v, u) \in E \}$$

die **Vorgänger** des Knotens uund die Knoten der Menge

$$\operatorname{succ}(u) = \{ v \in V \mid (u,v) \in E \}$$

die Nachfolger des Knotens u genannt.

Allgemeine Netwerk-Definition

Ein (künstliches) neuronales Netz ist ein (gerichteter) Graph G = (U, C), dessen Knoten $u \in U$ Neuronen oder Einheiten und dessen Kanten $c \in C$ Verbindungen genannt werden.

Die Menge U der Knoten wird partitioniert in

- die Menge Uin der Eingabeneuronen,
- die Menge Uout der **Ausgabeneuronen**, und
- die Menge U_{hidden} der versteckten Neuronen.

Es gilt

$$U = U_{\rm in} \cup U_{\rm out} \cup U_{\rm hidden},$$

$$U_{\text{in}} \neq \emptyset, \qquad U_{\text{out}} \neq \emptyset, \qquad U_{\text{hidden}} \cap (U_{\text{in}} \cup U_{\text{out}}) = \emptyset.$$

Allgemeines Neuron

Ein verallgemeinertes Neuron verarbeitet numerische Werte

Gradientenabstieg

Allgemeinerer Ansatz: Gradientenabstieg.

Notwendige Bedingung: differenzierbare Aktivierungs- und Ausgabefunktionen.

Illustration des Gradienten einer reellwertigen Funktion z = f(x, y) am Punkt (x_0, y_0) . Dabei ist $\vec{\nabla} z|_{(x_0, y_0)} = \left(\frac{\partial z}{\partial x}|_{x_0}, \frac{\partial z}{\partial y}|_{y_0}\right)$.

Error Backpropagation

Aktivierungsfunktion: logistisch Ausgabefunktion: Identität impliziter Biaswert

20

Algorithmus-Skizze (online)

gegeben: MLP mit G = (U, C), Lernrate η , Trainingsbeispiele L_{fixed} Initialisierung aller Gewichte (Zufallswerte)

wiederhole:

für jedes Trainingsbeispiel $l = (\vec{\imath}^{(l)}, \vec{o}^{(l)}) \in L_{\text{fixed}}$

Eingabe, Vorwärtsberechnung der Aktivierungen und Ausgabe:

$$\forall u \in U_{\text{in}} : \qquad \forall u \in U_{\text{hidden}} \cup U_{\text{out}} : \\ \operatorname{out}_{u}^{(l)} = i_{u}^{(l)} \qquad \operatorname{out}_{u}^{(l)} = \left(1 + \exp\left(-\sum_{p \in \operatorname{pred}(u)} w_{up} \operatorname{out}_{p}^{(l)}\right)\right)^{-1}$$

Fehlerberechnung und Rückübertragung (Backpropagation):

 $\begin{array}{l} \forall u \in U_{\text{out}}:\\ \delta_{u}^{(l)} = \left(o_{u}^{(l)} - \operatorname{out}_{u}^{(l)}\right)\lambda_{u}^{(l)} \end{array} \begin{array}{l} \forall u \in U_{\text{hidden}}:\\ \delta_{u}^{(l)} = \left(\sum_{s \in \operatorname{succ}(u)} \delta_{s}^{(l)} w_{su}\right)\lambda_{u}^{(l)} \end{array} \\ \text{mit Ableitung der Aktivierungsfunktion} \quad \left[\lambda_{u}^{(l)} = \operatorname{out}_{u}^{(l)}\left(1 - \operatorname{out}_{u}^{(l)}\right)\right] \\ \text{Berechnung der Gewichtsänderung} \quad \left[\Delta w_{up}^{(l)} = \eta \ \delta_{u}^{(l)} \operatorname{out}_{p}^{(l)}\right] \text{ und Update} \\ \text{bis Stopkriterium erreicht} \end{array} \right]$

(nicht vollständig!)

Schwellenwertelem.
 (Perceptron)

Schwellenwertelement

Schwellenwertelement für $x_1 \wedge x_2$.

Delta-Regel

Formale Trainingsregel: Sei $\vec{x} = (x_1, \ldots, x_n)$ ein Eingabevektor eines Schwellenwertelements, o die gewünschte Ausgabe für diesen Eingabevektor, und y die momentane Ausgabe des Schwellenwertelements. Wenn $y \neq o$, dann werden Schwellenwert θ und Gewichtsvektor $\vec{w} = (w_1, \ldots, w_n)$ wie folgt angepasst, um den Fehler zu reduzieren:

$$\begin{split} \theta^{(\text{neu})} &= \theta^{(\text{alt})} + \Delta \theta \quad \text{wobei} \quad \Delta \theta = -\eta (o - y), \\ \forall i \in \{1, \dots, n\} : \quad w_i^{(\text{neu})} = w_i^{(\text{alt})} + \Delta w_i \quad \text{wobei} \quad \Delta w_i = -\eta (o - y) x_i, \end{split}$$

wobei η ein Parameter ist, der **Lernrate** genannt wird. Er bestimmt die Größenordnung der Gewichtsänderungen. Diese Vorgehensweise nennt sich **Delta-Regel** oder **Widrow–Hoff–Procedure** [Widrow and Hoff 1960].

Online-Training: Passe Parameter nach jedem Trainingsmuster an.

Batch-Training: Passe Parameter am Ende jeder **Epoche** an, d.h. nach dem Durchlaufen aller Trainingsbeispiele.

Trainieren von Schwellenwertelementen

Beispieltrainingsprozedur: Online- und Batch-Training.

(nicht vollständig!)

- Schwellenwertelem.
 (Perceptron)
- MLPs

Mehrschichtige Perzeptren (MLPs)

Allgemeine Struktur eines mehrschichtigen Perzeptrons

Sigmoide Aktivierungsfunktionen

Stufenfunktion:

$$f_{\text{act}}(\text{net}, \theta) = \begin{cases} 1, \text{ falls net} \ge \theta, \\ 0, \text{ sonst.} \end{cases}$$

Sinus bis Sättigung: $f_{act}(net, \theta) = \begin{cases} 1, & \text{falls } net > \theta + \frac{\pi}{2}, \\ 0, & \text{falls } net < \theta - \frac{\pi}{2}, \\ \frac{\sin(net - \theta) + 1}{2}, & \text{sonst.} \end{cases}$ $1 \xrightarrow{1}{\frac{1}{2}} \xrightarrow{1}{\frac{1}{\frac{1}{2}}} \xrightarrow{\theta} & \theta + \frac{\pi}{2} \end{cases}$

Semilineare Funktion:

(nicht vollständig!)

- Schwellenwertelem.
 (Perceptron)
- MLPs
- CNNs

Convolutional Neural Nets (CNNs)

example from MNIST dataset http://yann.lecun.com/exdb/mnist/

2D input

[1] http://deeplearning.net/software/theano/tutorial/

specialized group of neurons in visual cortex limited & overlapping receptive fields with same filter

2D output (feature map)

Convolutional Layers

convolution

Convolutional Neural Nets (CNNs)

- local connectivity
- parameter sharing
- translation equivariance
- involves non-linear transform (activation function) after conv.
- pool size controls amount of invariance to input translations
- stride (step size) controls non-linear sub-sampling

Introspection

feature visualization (optimize input)

relevance / saliency analysis (for given input)

Neuron layer [x,y,z]

Channel layer_[:,:,z] Layer/DeepDream layer_[:,:,:]²

Class Logits pre_softmax[k] **Class Probability** softmax[k]

(a) Original Image

(b) Guided Backprop 'Cat'

(c) Grad-CAM 'Cat'

AH AE AA OW AO AW

=> sanity checks!

feature topography (improve interpretability)

neuron activation profiles

(nicht vollständig!)

- Schwellenwertelem.
 (Perceptron)
- MLPs
- CNNs
- RNNs

http://www.asimovinstitute.org/neural-network-zoo/

Recurrent Neural Nets

LeCun, Bengio & Hinton. "Deep Learning." nature 521.7553 (2015)

recursive networks

y

L

x

y

encoder

The repeating module in an LSTM contains four interacting layers.

Copy

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNs

- work well for sequential data
 - time series (with low sampling rate)
 - texts (translation, discourse, sentiment, ...)

support variable-length input

 including long-term dependencies

are hard to parallelize

Beispiel: CNN+RNN

Describes without errors

A person riding a motorcycle on a dirt road.

Describes with minor errors

Two dogs play in the grass.

A skateboarder does a trick on a ramp.

A little girl in a pink hat is blowing bubbles.

Unrelated to the image

A dog is jumping to catch a frisbee.

A refrigerator filled with lots of food and drinks.

A yellow school bus parked in a parking lot.

A group of young people playing a game of frisbee.

A herd of elephants walking

across a dry grass field.

Two hockey players are fighting over the puck.

A close up of a cat laying on a couch.

A red motorcycle parked on the side of the road.

Beispiel: CNN+RNN

https://avisingh599.github.io/deeplearning/visual-qa/

structure: encoder + decoder

- arbitrarily complex
- often symmetrical

objective: reconstruct inputs

- often under constraints (capacity, sparsity etc.)

regularization (e.g. sparsity)

Autoencoders

Convolutional Autoencoder

Stacked (Denoising) Autoencoder

Recurrent Autoencoder

Abstandsbasierte Netze

(nicht vollständig!)

- Schwellenwertelem.
 (Perceptron)
- MLPs
- CNNs
- RNNs
- RBF Netze

(nicht vollständig!)

- Schwellenwertelem.
 (Perceptron)
- MLPs
- CNNs
- RNNs
- RBF Netze
- LVQ

http://www.asimovinstitute.org/neural-network-zoo/

LVQ

- wie RBF-Netz ohne Ausgabeschicht
- Winner-Takes-All Ausgabefunktion

Voronoi-Diagramm => Quantisierung

(nicht vollständig!)

- Schwellenwertelem.
 (Perceptron)
- MLPs
- CNNs
- RNNs
- RBF Netze
- LVQ & SOMs

SOMs

Ausgabeneuronen mit Nachbarschaften

Eingabeneuronen

Finde topologieerhaltende Abbildung durch Beachtung der Nachbarschaft

Anpassungsregel für Referenzvektor:

$$\vec{r_u}^{(\text{new})} = \vec{r_u}^{(\text{old})} + \eta(t) \cdot f_{\text{nb}}(d_{\text{neurons}}(u, u_*), \varrho(t)) \cdot (\vec{x} - \vec{r_u}^{(\text{old})}),$$

 u_* ist das Gewinnerneuron (Referenzvektor am nächsten zum Datenpunkt). Die Funktion $f_{\rm nb}$ ist eine radiale Funktion.

Zeitabhängige Lernrate

 $\eta(t) = \eta_0 \alpha_\eta^t, \quad 0 < \alpha_\eta < 1, \qquad \text{oder} \qquad \eta(t) = \eta_0 t^{\kappa_\eta}, \quad \kappa_\eta > 0.$

Zeitabhängiger Nachbarschaftsradius

 $\varrho(t) = \varrho_0 \alpha_\varrho^t, \quad 0 < \alpha_\varrho < 1, \qquad \text{oder} \qquad \varrho(t) = \varrho_0 t^{\kappa_\varrho}, \quad \kappa_\varrho > 0.$

Visualisierung (2D-Eingaberaum) Referenzvektoren => "Entfaltung"

Visualisierung (2D-Ausgaberaum) Aktivierung für eine Beispieleingabe

Energiebasierte Netze

(nicht vollständig!)

- Schwellenwertelem.
 (Perceptron)
- MLPs
- CNNs
- RNNs
- RBF Netze
- LVQ & SOMs
- Hopfield-Netze

50

Hopfield-Netze

Zustandsgraph

- Konvergenz bei asynchroner Verarbeitung (in fester Reihenfolge)
- Endzustand (lokales) Energieminimum
- Verwendung als assoziativer Speicher oder zur Optimierung

Generative Models

Generative Training

• Given training data, generate new samples from same distribution!

training data ~ $p_{data}(x)$

generated samples ~ $p_{model}(x)$

=> train $p_{model}(x)$ to approximate $p_{data}(x)$

here: capture dependencies between pixels

images from Denton et al. 2015

undirected model

Restricted Boltzmann Machine (RBM) R

hidden variables (conditionally independent given visible variables)

visible variables (conditionally independent given hidden variables)

$$E(\boldsymbol{v},\boldsymbol{h}) = -\boldsymbol{b}^{\top}\boldsymbol{v} - \boldsymbol{c}^{\top}\boldsymbol{h} - \boldsymbol{v}^{\top}\boldsymbol{W}\boldsymbol{h}$$

$$P(\mathbf{v} = \boldsymbol{v}, \mathbf{h} = \boldsymbol{h}) = \frac{1}{Z} \exp\left(-E(\boldsymbol{v}, \boldsymbol{h})\right)$$

"partition function" – for probability normalization not tractable (sum over **many** values)

RBM Training

make samples from training

data more likely

make samples from model less likely

negative phase

 $p_{\text{model}}(x)$

• $p_{\text{data}}(x)$

Variational Autoencoder (VAE)

adapted from F. Chollet (2017) "Deep Learning with Python", Manning

Generative Adversarial Net (GAN)

generator net (like VAE decoder):

try to fool the discriminator by generating real-looking data

discriminator net:

try to distinguish between real and fake data

directed model

(causal structure)

Directed Graphical Model

hidden factors (latent variables)

data (observable variables)

Use DNNs to parameterize and represent conditional distributions!

(nicht vollständig!)

- Schwellenwertelem.
 (Perceptron)
- MLPs
- CNNs
- RNNs
- RBF Netze
- LVQ & SOMs
- Hopfield-Netze
- BMs, RBMs & DBNs

http://www.asimovinstitute.org/neural-network-zoo/

Boltzmann-Maschinen (1985)

Keine Neuronen sondern Zufallsvariablen, die sich gegenseitig beeinflussen!

Geoffrey Hinton (Univ. of Toronto / Google)

Restricted Boltzmann Machine (RBM)

hidden variables

(conditionally independent given visible variables)

visible variables

(conditionally independent given hidden variables)

$$E(\boldsymbol{v},\boldsymbol{h}) = -\boldsymbol{b}^{\top}\boldsymbol{v} - \boldsymbol{c}^{\top}\boldsymbol{h} - \boldsymbol{v}^{\top}\boldsymbol{W}\boldsymbol{h}$$

$$P(\mathbf{v} = \mathbf{v}, \mathbf{h} = \mathbf{h}) = \frac{1}{Z} \exp(-E(\mathbf{v}, \mathbf{h}))$$

"partition function" – for probability normalization not tractable (sum over **many** values)

RBM Training

make samples from training data more likely

make samples from model less likely

(nicht vollständig!)

- Schwellenwertelem.
 (Perceptron)
- MLPs
- CNNs
- RNNs
- RBF Netze
- LVQ & SOMs
- Hopfield-Netze
- BMs, RBMs & DBNs
- VAEs

http://www.asimovinstitute.org/neural-network-zoo/

Variational Autoencoder (VAE)

adapted from F. Chollet (2017) "Deep Learning with Python", Manning

VAE Introspection

Latent Space Visualization (for MNIST dataset)

(nicht vollständig!)

- Schwellenwertelem.
 (Perceptron)
- MLPs
- CNNs
- RNNs
- RBF Netze
- LVQ & SOMs
- Hopfield-Netze
- BMs, RBMs & DBNs
- VAEs
- GANs

http://www.asimovinstitute.org/neural-network-zoo/

Generative Adversarial Net (GAN)

generator net (like VAE decoder):

try to fool the discriminator by generating real-looking data

discriminator net:

try to distinguish between real and fake data

images from Denton et al. 2015

(nicht vollständig!)

- Schwellenwertelem.
 (Perceptron)
- MLPs
- CNNs
- RNNs

Abstand

generativ

- RBF Netze
- LVQ & SOMs
- B Hopfield-Netze
- 🖁 BMs, RBMs & DBNs
- VAEs
- GANs

http://www.asimovinstitute.org/neural-network-zoo/

Ausblick

- Responsible Data Science (Projekt)
 - 16. Juli (Workshop)
 - 22. November (öffentliche Präsentation)
- Introduction to Deep Learning (jedes WiSe)
 Vorlesung (flipped) + Übung + Tutorium
- Learning Generative Models (jedes SoSe)
 Vorlesung (flipped) + Übung
- Music Information Retrieval (jedes WiSe)
 Vorlesung + Übung